LSD1/CoREST is an allosteric nanoscale clamp regulated by H3-histone-tail molecular recognition.

نویسندگان

  • Riccardo Baron
  • Nadeem A Vellore
چکیده

The complex of lysine-specific demethylase-1 (LSD1/KDM1A) with its corepressor protein CoREST is an exceptionally relevant target for epigenetic drugs. Here, we provide insight into the local and global changes of LSD1/CoREST conformational dynamics that occur upon H3 binding on the basis of a total cumulative time of one microsecond molecular dynamics simulation. The LSD1/CoREST complex functions as an allosteric nanoscale-binding clamp, which is regulated by substrate binding. In the unbound state, LSD1/CoREST reversibly visits clamp states that are more open or significantly more closed compared with the available X-ray crystal structures. The Lys triad of residues Lys355, Lys357, and Lys359 gates the entrance of the H3 pocket. H3 binding shifts the pocket breathing dynamics toward open, higher-volume states while reducing the overall flexibility of the LSD1/CoREST nanoscale clamp. We show that the H3 pocket is an allosteric site for the regulation of the rotation of the amino oxidase domain with respect to the Tower domain. The allosteric mechanism relies on the specific reduction of nanoscale domain rotation upon local H3-tail binding. Instead, clamp opening/closing motions that do not involve domain rotation only reduce in amplitude yet are dominant in the bound state. Overall, our data suggest that the H3 binding pocket is a central target site to (i) switch off LSD1 amino oxidase activity, thus H3-tail demethylation; (ii) block the competitive binding of transcription factors; and (iii) prevent chromatin anchoring to LSD1/CoREST. This study underscores the importance of receptor flexibility for future epigenetic drug discovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics simulations indicate an induced-fit mechanism for LSD1/CoREST-H3-histone molecular recognition

BACKGROUND Lysine Specific Demethylase (LSD1 or KDM1A) in complex with its co-repressor protein CoREST catalyzes the demethylation of the H3 histone N-terminal tail and is currently one of the most promising epigenetic targets for drug discovery against cancer and neurodegenerative diseases. Models of non-covalent binding, such as lock and key, induced-fit, and conformational selection could he...

متن کامل

Interplay among nucleosomal DNA, histone tails, and corepressor CoREST underlies LSD1-mediated H3 demethylation.

With its noncatalytic domains, DNA-binding regions, and a catalytic core targeting the histone tails, LSD1-CoREST (lysine-specific demethylase 1; REST corepressor) is an ideal model system to study the interplay between DNA binding and histone modification in nucleosome recognition. To this end, we covalently associated LSD1-CoREST to semisynthetic nucleosomal particles. This enabled biochemica...

متن کامل

Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase.

Histone methylation regulates diverse chromatin-templated processes, including transcription. Many transcriptional corepressor complexes contain lysine-specific demethylase 1 (LSD1) and CoREST that collaborate to demethylate mono- and dimethylated H3-K4 of nucleosomes. Here, we report the crystal structure of the LSD1-CoREST complex. LSD1-CoREST forms an elongated structure with a long stalk co...

متن کامل

Extranucleosomal DNA enhances the activity of the LSD1/CoREST histone demethylase complex

The promoter regions of active genes in the eukaryotic genome typically contain nucleosomes post-translationally modified with a trimethyl mark on histone H3 lysine 4 (H3K4), while transcriptional enhancers are marked with monomethylated H3K4. The flavin-dependent monoamine oxidase LSD1 (lysine-specific demethylase 1, also known as KDM1) demethylates mono- and dimethylated H3K4 in peptide subst...

متن کامل

Structural basis of LSD1-CoREST selectivity in histone H3 recognition.

Histone demethylase LSD1 regulates transcription by demethylating Lys(4) of histone H3. The crystal structure of the enzyme in complex with CoREST and a substrate-like peptide inhibitor highlights an intricate network of interactions and a folded conformation of the bound peptide. The core of the peptide structure is formed by Arg(2), Gln(5), and Ser(10), which are engaged in specific intramole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 31  شماره 

صفحات  -

تاریخ انتشار 2012